KILLEDRuntime Complexity (innermost) proof of /tmp/tmpbAJyxI/subsets.xml
The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF).0 CpxRelTRS↳1 DecreasingLoopProof (⇔, 1475 ms)↳2 BOUNDS(n^1, INF)↳3 RenamingProof (⇔, 0 ms)↳4 CpxRelTRS↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)↳6 typed CpxTrs↳7 OrderProof (LOWER BOUND(ID), 0 ms)↳8 typed CpxTrs(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
subsets(Cons(x, xs)) → subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
subsets(Nil) → Cons(Nil, Nil)
mapconsapp(x', Cons(x, xs), rest) → Cons(Cons(x', x), mapconsapp(x', xs, rest))
mapconsapp(x, Nil, rest) → rest
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
The (relative) TRS S consists of the following rules:
subsets[Ite][True][Let](Cons(x, xs), subs) → mapconsapp(x, subs, subs)
Rewrite Strategy: INNERMOST(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
subsets(Cons(x, xs)) →+ subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [xs / Cons(x, xs)].
The result substitution is [ ].(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
subsets(Cons(x, xs)) → subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
subsets(Nil) → Cons(Nil, Nil)
mapconsapp(x', Cons(x, xs), rest) → Cons(Cons(x', x), mapconsapp(x', xs, rest))
mapconsapp(x, Nil, rest) → rest
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
The (relative) TRS S consists of the following rules:
subsets[Ite][True][Let](Cons(x, xs), subs) → mapconsapp(x, subs, subs)
Rewrite Strategy: INNERMOST(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.(6) Obligation:
Innermost TRS:
Rules:
subsets(Cons(x, xs)) → subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
subsets(Nil) → Cons(Nil, Nil)
mapconsapp(x', Cons(x, xs), rest) → Cons(Cons(x', x), mapconsapp(x', xs, rest))
mapconsapp(x, Nil, rest) → rest
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
subsets[Ite][True][Let](Cons(x, xs), subs) → mapconsapp(x, subs, subs)
Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
subsets, mapconsapp(8) Obligation:
Innermost TRS:
Rules:
subsets(Cons(x, xs)) → subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
subsets(Nil) → Cons(Nil, Nil)
mapconsapp(x', Cons(x, xs), rest) → Cons(Cons(x', x), mapconsapp(x', xs, rest))
mapconsapp(x, Nil, rest) → rest
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
subsets[Ite][True][Let](Cons(x, xs), subs) → mapconsapp(x, subs, subs)
Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:NilGenerator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_0(x))The following defined symbols remain to be analysed:
subsets, mapconsapp